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In this paper, a set of non-linear equations of motion for a single-tendon tension
leg platform are developed. The equations of motion consist of partial differential
equations representing the transverse and longitudinal response of the tendon. In
addition, a mixed formulation partial differential equation describing the surge
response of the hull and tendon, coupled with an ordinary differential equation
for the pitch response of the rigid hull is presented. Many of the simplifying
assumptions used by prior researchers have been eliminated. The hull is modelled
as a hollow rigid cylindrical body, and the tendon as a hollow cylindrical beam
pinned at its top to the hull and at its bottom to the template connected to the
seafloor. The Extended Hamilton’s Principle is applied and the Lagrangian is fully
developed. Terms include the kinetic energy, bending and membrane strain
energies and the potential energy due to gravity and buoyancy. The normalized
equations of motion are also detailed. The full derivation with assumptions are
presented. The response, analyzed for stochastic wave and current loading, is
presented with a planar motion assumption. The tension leg platform will oscillate
about its vertical position due to ocean waves. Current will cause a tension leg
platform to oscillate about an offset position rather than its vertical position. This
offset in the surge direction has a corresponding setdown, the lowering of the hull
in the heave direction, which increases the buoyancy forces. This results in a higher
tension in the tendons than if the tendon and hull were in a vertical position.
Forces on the tendon have been neglected in much of the literature. The responses
presented in this work show that the inclusion of forces on the tendon will result
in both a greater amplitude and offset position when compared to studies where
these forces are neglected. This offset position, which is the surge displacement
from the vertical position, is significant in the operation of a tension leg platform.
A Monte Carlo simulation was performed on the drag and inertia coefficients in
Morison’s equation. A uniform random distribution of coefficients was selected
from 0·6 to 2·0 for each coefficient. Twenty computer simulations were
implemented for each coefficient. The response showed that the offset position and
the amplitude are both dependent on the drag coefficient. The surge of the hull
shows a maximum offset approximately three times greater for the coefficient that
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resulted in the maximum displacement than the minimum. The response did not
show a significant dependence on the inertia coefficient, however, this is not
necessarily true for unsteady current, large hull and tendon diameters, ocean wave
frequencies greater than 1 rad/s, and low current velocity.
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1. INTRODUCTION

The Tension Leg Platform (TLP) is an offshore structure particularly well suited
for deep-water operation. Unlike fixed structures, the cost of a compliant TLP
does not dramatically increase with water depth. The TLP is vertically moored at
each corner of the hull minimizing the heave, pitch and roll of the platform. This
small vertical motion results in less expensive production equipment than would
be required on a semisubmersible [1, 2].

TLPs are complete oil and natural gas production facilities costing US $1 billion
or more [3]. The supporting structure of a TLP consists of a hull, tendons and
templates, as shown in Figure 1. The hull is a buoyant structure with a deck at
its top that supports the oil production facility and crew housing. Pontoons and
columns provide sufficient buoyancy to maintain the deck above the waves during

Figure 1. Schematic of a tension leg platform.
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all sea states. These columns are moored to the seafloor through tendons, and fixed
in place with templates. The hull’s buoyancy creates tension in the tendons.

The tallest TLP at the time of its construction, Shell Oil’s Auger TLP in the Gulf
of Mexico, began production in 1994 after an investment of six years and US $1·2
billion. The Auger TLP with a crew of 112 has two main decks 90 by 90 m (300
by 300 ft) with a well bay at its center. Four cylindrical columns 22·5 m (74 ft
diameter) and pontoons [8·5×10·7 m (28 by 35 ft) cross-section] comprise the
hull. There are three tendons at each column. Each tendon also known as tether
or tension leg, was assembled from 12 steel pipes with a 66-cm (26-in.) diameter
and a 3·3-cm (1·3-in.) wall thickness, connected end to end, and a total length of
884 m (2900 ft). During severe storms it may surge 72 m (235 ft) [3, 4].

The surge, sway and yaw resonance frequencies of TLPs are below that of the
wave frequency range as defined by a power spectrum such as the
Pierson–Moskowitz. The heave, pitch and roll resonance frequencies are above
this range. The resulting response is a desirable feature of TLPs. Wind, waves and
current will cause a TLP to oscillate about an offset position rather than its vertical
position. This offset in the surge direction has a corresponding setdown, the
lowering of the TLP in the heave direction, which increases the buoyancy forces.
This results in a higher tension in the tendons than if it was in the vertical position.
Higher order effects due to the non-linear nature of the waves and non-linear
structural properties will affect the dynamic response and may be of interest.
Papers that include varying levels of higher order effects are discussed in a review
paper by Adrezin et al. [5]. A study of the dynamics of compliant offshore
structures is found in the text by Bar-Avi and Benaroya [6].

2. PROBLEM DESCRIPTION

In this paper, a set of non-linear equations of motion for a single-tendon tension
leg platform is developed. Many of the simplifying assumptions used by prior
researchers, such as modelling the tendon as a massless spring, have been
eliminated. The response is analyzed for random wave and current loading. Planar
motion is considered and the equations of motion for the tendon and the hull is
coupled. The hull is modelled as a hollow rigid cylindrical body, the tendon as a
hollow cylindrical beam pinned at its top to the hull and at its bottom to the
template. The response is determined numerically in the time domain by
implementing a finite difference scheme.

3. EXTENDED HAMILTON’S PRINCIPLE

The Extended Hamilton’s Principle is a method utilizing the calculus of
variations [7] for deriving the equations of motion and boundary conditions for
deformable bodies [8]. The Extended Hamilton’s Principle may be expressed as

d g
t2

t1

T dt=−d g
t2

t1

W dt, (1)
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where d represents a virtual change, T is the kinetic energy and dW is the virtual
work. The virtual work may be expressed as

dW=−dV+ dWnc , (2)

where V is the potential energy and dWnc represents the virtual work due to
non-conservative forces.

In this paper, equation (1) is rewritten as

d g
t2

t1

L dt=−d g
t2

t1

W dt, (3)

where L is the Lagrangian, the difference between the kinetic and potential enegy,

L=T−V, (4)

and the expression for virtual work is

dW=Q
 ydv+Q
 xdu, (5)

where Q
 x and Q
 y are the generalized forces per unit length associated with the
generalized co-ordinates u and v, and du and dv are virtual displacements.

4. ASSUMPTIONS

Several assumptions are outlined in this section. They pertain to the physical
properties of a TLP and simplify the analysis. The extent and the validity are
discussed below. In addition, other assumptions are presented within the body of
this work preceding their application.

Tendon length is much greater than its diameter, l�Do .
Shear effects in the tendon need not be included.
Planar motion of the TLP.
Hull is treated as a rigid body.
Hull pitch angle is small due to excessive buoyancy forces, therefore f�1.
The top of the hull always remains above the wave elevation,
L+LH cos fq d+ h(y, t).
The bottom of the hull is always submerged (otherwise unstable),
LQ d+ h(y, t).
Hull is represented by a hollow vertical cylinder.
Center of gravity of the hull is located at the geometrical center of the hull (other
locations have been analyzed).
Water level is assumed constant and horizontal across the hull’s column at a
given instant of time.

Since the tendon length is considered to be much greater than its diameter,
shear-deformation effects are not included since these will then be considerably less
than the effects due to the bending energy. In addition, high frequency motions
are not of interest in the present study since they are well above the range of
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loading. These two assumptions allow for the use of Euler–Bernoulli beam
theory [9].

Once again, since we are interested in resonant frequencies in the range of the
environmental loading, the longitudinal frequencies may be neglected. The natural
frequencies for transverse vibration are significantly lower than those for
longitudinal (extensional) vibration.

The assumption of planar motion is reasonable if vortex shedding is neglected.
Vortex shedding results in an out-of-plane response which needs to be explored
further [10, 11].

Treatment of the hull as a rigid body is a reasonable assumption [12]. Its stiffness
results in natural frequencies well above the range for wave, wind and current
loading. The requirement that the top of the hull always remains above the waves
is necessary to allow it to safely support oil and gas production activities. Due to
the mass of the hull and the flexibility of the tendons, the bottom of the hull must
always remain submerged for the system to remain stable. If not for the buoyancy
forces, the tendon would buckle under its own weight.

The representation of the hull as a hollow cylinder with a center of mass located
at its geometric center (along with the planar motion restriction) are the
assumptions of concern. An actual hull is top heavy with the production facility
and crew housing at its top and buoyant pontoons and columns at its bottom. The
validity of these assumptions need to be studied further. The center of gravity can
be calculated at any position by modifying equation (48), which is the vector to
the center of gravity of the hull. Different locations have been tried.

The water level is assumed constant and horizontal across the hull’s column at
a given instant of time. This simplifies the calculation of the center of buoyancy.
The validity of this assumption is dependent on the wave height, wave length, wave
frequency and the column’s diameter. With this assumption, the position of the
center of buoyancy should be recalculated at each time step. For a typical TLP,
this assumption is reasonable.

5. DERIVATION OF THE LAGRANGIAN

The Lagrangian, which is the energy functional is now derived. Applying the
Extended Hamilton’s Principle will result in the equations of motion and boundary
conditions. The Lagrangian for the tendon, L is the sum of the energies:

L=Ek −Es −Ep , (6)

where Ek represents the kinetic energy, Es represents the strain energy, and Ep

includes all potential energy other than strain. The Lagrangian will be expressed
in terms of Eulerian co-ordinates (x, y). Applying the Extended Hamilton’s
Principle results in a material derivative. All velocities in this paper represent solely
the local part, and not the convective part of the material derivative. This is
because the convective terms are small as compared to the local terms. For
systems with large motion, a Lagrangian co-ordinate system (X, Y) may be
preferred.
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5.1.  

A body subject to forces may undergo rigid body motions and deformations.
The rigid body motions do not allow strain and therefore do not include stress.
The study of a deformable body is required to determine the strain energy of a
system. Figure 2 shows an arbitrary body in its undeformed and deformed
configuration. Derivations will be presented for planar motion only. A continuum
mechanics text such as Fung [13] may be consulted for the derivation in three
spatial dimensions. The formulation of Bottega [14] would be useful for the
inclusion of base excitations (e.g., earthquakes). A point of the undeformed body
has the co-ordinate (X, Y) and an attached infinitesimal line segment has the
length dS. After the body is deformed, the co-ordinates for the point (X, Y) is now
(x, y) and the new length is ds. The vertical and horizontal displacements of a
point due to deformation and rigid body motion are represented by u and v,
respectively. They are defined as

u= x−X, v= y−Y. (7, 8)

The transverse strain eyy and the shear strain exy are assumed to be substantially
smaller than the axial strain exx . Therefore, only this strain will be related to
displacements u and v. The axial Eulerian strain at a point in terms of the
displacements is derived as

exx =
1u
1x

−
1
2 $01u

1x1
2

+01v
1x1

2

%. (9)

Assuming small strain and ‘‘moderate’’ rotation, exx�1, (1u/1x)2�1u/1x and
(1v/1x)2 is on the same order of 1u/1x yields

exx =
1u
1x

−
1
2 01v

1x1
2

. (10)

The constitutive relationship where E is the modulus of elasticity is

s=Eexx . (11)

Figure 2. Undeformed body (left) and deformed body (right).
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The axial strain is derived from the displacement due to membrane and bending
stresses. Shear stresses will be neglected, a reasonable assumption for a long
slender beam. Strain induced by torsion and temperature changes will also be
neglected. This simplifies the expression and results in the bending strain energy,
EB , which may now be written as

EB =g
s= l

s=0

1
2

EI(s)01u

1s1
2

ds, (12)

and a membrane strain of

EM =
1
2 g

x=L

x=0

P$1u
1x

−
1
2 01v

1x1
2

% dx, (13)

where P is the tension in the tendon. An expression for the tension will be
developed later in this paper. The curvaturve 1u/1s is equal to the inverse of the
radius of curvature R(x). This is expressed in Cartesian co-ordinates as

R(x)=
(1+ (1v/1x)2)3/2

12v/1x2 . (14)

Therefore, the total strain energy is

Es =EB +EM . (15)

5.1.1. Estimation of the projected tendon length L

The vertical motion of the hull of a TLP is minimal. The following is a
derivation of an estimate of the projection of the tendon length l on the x-axis,
referred to as L. The tendon is considered extensible, but this extension is neglected
in the calculation of L. This is consistent with the small wave amplitude to water
depth ratio assumption discussed subsequently.

The co-ordinate s is defined along the length of the tendon. An incremental
length, ds, is given by

ds=z1+ vx (x, t)2 dx. (16)

The assumption of neglecting the extension in the tendon leads to a constraint
relationship between displacements u and v. Recall that u= x−X. From
Figure 3, it can be concluded that if the beam is vertical and straight in its
undeformed position, then co-ordinate X=S. Furthermore, if inextensible, S= s.
This leads to the relationship X= s, which will be of use in developing the
constraint relationship. Assigning j as a dummy variable for x, the co-ordinate
x is defined by the relation

s(x)=g
j= x

j=0
X1+01v(j, t)

1j 1
2

dj. (17)
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If the slope 1v/1j is assumed small (1v/1j�1), which is a reasonable assumption
based on the observed motion of a tension leg platform, then a binomial expansion
yields the simplification

s= x+
1
2

v
1v
1j b

j= x

j=0

−
1
2 g

j= x

j=0

v
12v
1j2 dj. (18)

The boundary condition that v=0 at the base will be applied. Solving for x and
substituting into equation (7), along with X= s, results in the holomic constraint
relationship

u=−
1
2

v
1v
1j

+
1
2 g

j= x

j=0

v
12v
1j2 dj. (19)

The first term accounts for the displacement and slope of the tendon. The second
term accounts for the displacement and curvature of the tendon and must be
solved numerically if no further assumptions are made. However, for a tension leg
platform, the second term should be much smaller than the first due to the high
tension in the tendons. Note that in problems where a small slope assumption is
not valid, equation (17) must be evaluated numerically.

The relationship between L and l is

L= l+ u=x=L . (20)

Figure 3. Incremental element of mass dm shown in its undeformed position dS, its perturbed
position ds and its projection dx.



-   35

Substituting equation (19) into the above equation results in

L= l−
1
2

v
1v
1j bj=L

+
1
2 g

j=L

j=0

v
12v
1j2 dj. (21)

5.2.  

The kinetic energy for the tendon will be developed next. The kinetic energy is
a function of the incremental mass which is first expressed in terms of the path
variable s. Ultimately, the Lagrangian will be evaluated over the spatial variable
x. This requires the derivation of the incremental mass in terms of x. Relationships
between the two will be presented in order to maintain a constant mass for the
system.

For an incremental length of tendon in the perturbed state, ds, the
corresponding incremental mass, dm̂�, is (Figure 3)

dm̂�= 1
4p[rTp (s)(Do (s)2 −Di (s)2)+CArflp (s)Do (s)2] ds. (22)

The first term represents the mass of the tendon. The second term is the added
mass [15] where CA is the non-dimensional added mass coefficient that is related
to the inertia coefficient CM by

CA =CM −1. (23)

For a very large tendon length to diameter ratio, as is the case for these structures,
CM approaches its theoretical limit of 2 and CA approaches 1. This added mass
is due to the entraining of fluid particles by the motion of the tendon.

The same incremental mass expressed in equation (22) may be described as
projected onto the present. Cartesian co-ordinate system’s x-axis as

dm̂�= 1
4p[rT (x)(Do (x)2 −Di (x)2)+CArfl (x)Do (x)2] dx. (24)

If the tendon is assumed to have constant circular outer and inner diameters along
the path variable s, this will result in Do (s)=Do and Di (s)=Di .

Consider the perturbed (or present) tendon density at time t1 and at a later time
t2, represented by rTp1(s) and rTp2(s), respectively. The following expression relates
the densities where rTp1(s) is multiplied by the Jacobian determinant (the
determinant of the Deformation Gradient):

rTp1(s)=det

1x
1X
1y
1X

1x
1Y
1y
1Y

rTp1(s). (25)G
G

G

K

k
G
G

G

L

l
The Jacobian determinant may be expressed as

det

1x
1X
1y
1X

1x
1Y
1y
1Y

=1+O(e2
xx )1 1, (26)G

G

G

K

k
G
G

G

L

l
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due to small deformation, which leads to

rTp2(s)= rTp1(s)1 rTp , (27)

and therefore the perturbed density is assumed to be constant.
Water density will also be assumed constant: rflp (s)= rflp . When the perturbed

length ds is projected onto the x-axis, it results in a length dxE ds due to bending
strain. (See Figure 3.) One can see that the upper bound dx=ds occurs when the
tendon is in its undeformed (vertical) position. Membrane strain, however, may
cause dsq dx.

The Lagrangian will be integrated along the x-axis. The projection of the tendon
length l onto the x-axis, results in a projected length L which is less than or equal
to l. In order to maintain a constant mass, the incremental mass in the x–y frame
may be written with a constant density and varying diameters to represent an
elliptical horizontal cross-section of the deformed tendon. A second alternative
assumes that the constant diameters along the path variable s will be used, and
the density will vary. For instance, to account for dxQ ds the density will increase
rT (x)q rTp . Applying the second alternative with these assumptions yields the new
relationship for dm̄, following equations (22) and (24):

dm̂�= 1
4p[rTp (D2

o −D2
i )+CArflpD2

o ] ds (28)

and

dm̂�= 1
4p[rT (x)(D2

o −D2
i )+CArfl (x)D2

o ] dx. (29)

To satisfy the continuity equation for an incremental mass dm̂�, equate equations
(28) and (29)

1
4prTp (D2

o −D2
i ) ds= 1

4prT (x)(D2
o −D2

i ) dx, (30)

and to maintain continuity for the added mass term:
1
4pCArflpD2

o ds= 1
4pCArfl (x)D2

o dx. (31)

Substituting equation (16) into the above equations results in the following
relationships between the densities for the perturbed and present Cartesian
configurations:

rT (x)= rTpz1+ vx (x, t)2 = rTpG (32)

and

rfl (x)= rflpz1+ vx (x, t)2 = rflpG, (33)

where

G0z1+ vx (x, t)2 (34)

and corresponds to the change of a variable due to a projection onto the x-axis.
Substituting equations (32) and (33) into equation (29) yields the differential mass
expression where all parameters within the square brackets are assumed constant:

dm̂�= 1
4p[rTp (D2

o −D2
i )+CArflpD2

o ]G dx. (35)
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The area moment of inertia for the tendon’s cross-section is

I(s)=
1
64

p(D4
o −D4

i ), (36)

and its mass moment of inertia for a thin hollow disk is

dJ=
dm̂�I(s)
A(s)

=
1
64

p[rT (D2
o −D2

i )+CArflD2
o ](D2

o +D2
i )G dx. (37)

The kinetic energy due to the tendon’s linear and angular velocities may be
represented by

Ek =g
s= l

s=0

1
2 dm̂� [ut (x, t)2 + vt (x, t)2]+g

s= l

s=0

1
2 dJut (x, t)2. (38)

Substituting equations (16), (22) and (37) into equation (38) with the velocities
in the x-direction, ut (x, t), and the y-direction, vt (x, t), results in the kinetic energy
expressed in the present Cartesian frame,

Ek =g
x=L

x=0 618 p[rTp (D2
o −D2

i )+CArflpD2
o ]G

× [ut (x, t)2 + vt (x, t)2]+
1

128
p[rT (D2

o −D2
i )+CArflD2

o ]

× (D2
o +D2

i )Gut (x, t)7 dx, (39)

where the angular velocity, ut (x, t), is found from the geometry:

tan u(x, t)=
dv(x, t)

dx
. (40)

Differentiating the above equation with respect to time yields

[1+ (tan u(x, t))2]ut (x, t)= vxt (x, t). (41)

Substituting equation (40) into equation (41) and rearranging terms results in

ut (x, t)=
vxt (x, t)

G2 . (42)

In the derivation of the strain energy, vx (x, t)2 is on the order of ux (x, t), and
ux (x, t)�1, therefore G1 1.

5.3.       

In this section, the potential energy is developed. The tendon’s mass and its
buoyancy are the two terms of the potential energy. In much of the analytical work



.   . 38

derived by prior researchers, these terms are neglected, in effect it assumes that
the tendon is neutrally buoyant. In an actual TLP, the tension contribution from
the tendon must be considered. If the tendon does not have sufficient buoyancy,
the TLP’s payload will have to be reduced or the hull’s buoyancy must be
increased.

The potential energy due to gravity and buoyancy is expressed as

Ep =−g
x=L

x=0

Fgbu dx, (43)

where Fgb is the force due to gravity and buoyancy of the tendon, and u is the
vertical displacement.

The gravitational force is due to the tendon’s mass, and its buoyancy is due to
the displaced volume of seawater. This yields

Fgb =−1
4rT (x)p(D2

o −D2
i )(l− s)g+ 1

4rfl (x)pD2
o (l− s)g, (44)

where the first term is due to gravity and the second to buoyancy. The factor
(l− s) accounts for the length of tendon above position s. Previously, the
following relationships were developed:

rT (x)= rTpG, rfl (x)= rflpG. (45, 46)

Substituting the above equations into equation (43) results in the expression for
the potential energy:

Ep =−g
x=L

x=0

{1
4p{−rTp (D2

o −D2
i )+ rflpD2

o } · (l− s) · gGu} dx. (47)

5.4.   

Substituting equations (14), (16), (15), (39) and (47) into equation (6) yields the
Lagrangian which is substituted to L to obtain the equations of motion and
boundary conditions.

6. TENDON WITH HULL

The tendon has been derived as an elastic element. It is coupled to the hull of
the TLP which may be represented as a rigid body. The equation of motion for
the hull, which is an ordinary differential equation, will first be presented along
with its forces that contribute to the boundary conditions of the tendon. This is
the pitch response of the hull. Next, a numerical approach to estimating the
magnitude of the tendon projection L, will be discussed. This is useful when
assumptions such as small angle are not appropriate. The equations of motion for
the transverse and longitudinal vibration of the tendon are presented. Finally, the
mixed formulation equation of motion and boundary conditions for the coupled
tendon will be presented. This partial differential equation describes the surge
response at all points along the tendon. The response at the tendon’s top boundary
also corresponds to the surge response of the hull.
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Figure 4. Model of tendon pinned to hull and seafloor.

In Figure 4, the bottom beam represents the tendon with a horizontal
displacement of v(x, t). The top mass represents the entire hulland its payload. It
is modelled as a rigid body and rotates about the hinge connecting it to the tendon
with an angle f(t).

6.1.        

The equation of motion for the rigid hull is developed in this subsection. First
the equations for the hull’s kinematics are presented. This is followed with the
derivation of the center of buoyancy. This position must be re-evaluated at each
instant in time and has generally been neglected in the analytical equations of prior
researchers. The kinetics are then derived resulting in the hull’s equation of motion
and its contribution to the forces on the tendon.

6.1.1. Kinematics

The center of mass in the equation below is assumed at the hull’s geometric
center. As previously discussed, it may be calculated at any position. This is
accomplished by simply replacing LH /2 with the appropriate location. The
displacement vector from the origin to the hull’s center of mass, r̃(t), is written
as

r̃(t)=$L(t)+
LH

2
cos f%ı̂+$v(L(t), t)+

LH

2
sin f% ĵ. (48)
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The velocity and the acceleration of the hull are

r	.(t)=$L� (t)−LH

2
ft sin f%ı̂+$v̇(L(t), t)+

LH

2
ft cos f% ĵ (49)

and

r	..(t)=$L� (t)−LH

2
ftt sin f−

LH

2
f2

t cos f%ı̂
+ $v̈(L(t), t)+

LH

2
ftt cos f−

LH

2
f2

t sin f% ĵ. (50)

For the derivation of the center of buoyancy, the following assumptions are
utilized: only planar motion is considered, the hull is a rigid body, the hull’s
columns always pierce the water surface, and the water level is assumed constant
and horizontal across the hull’s column at a given instant of time.

The centroid for the submerged volume is derived as

x̄'=
s x̄'i

s VHS

=
D2

H

32LHS (y, t)
tan2 f+

LHS (y, t)
2

(51)

and

ȳ'=
s ȳ'i

s VHS

=
D2

H tan f

16LHS (t)
. (52)

Finally, this results in the moment arm, lb , between the hull’s buoyancy forces
and the hull pivot in the inertial co-ordinate system of

lb =
D2

H tan f

16LHS (y, t)
cos f+0 D2

H tan2 f

32LHS (y, t)
+

LHS (y, t)
2 1 sin f

=$ D2
H

32LHS (y, t)
(2+ tan2 f)+

LHS (y, t)
2 % sin f. (53)

6.1.2. Kinetics

The kinetics for the hull are now developed in order to derive the hull’s equation
of motion. The inertia, weight and buoyancy of the hull are also forces on the
tendon. Additional buoyancy will increase the tension in the tendon, effectively
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Figure 5. Free body diagram of the hull (waves, current and wind forces not shown).

stiffening the system; see Figure 5. Performing a force balance on the hull and
utilizing equation (50) yields:

The sum of the vertical forces, where the terms represent the hull’s weight,
buoyancy and reaction force equated to the hull’s mass (including added mass)
multiplied by its vertical acceleration,

s Fx =F2b −F2g −Fcx =M� $L� (t)−LH

2
ftt sin f−

LH

2
f2

t cos f%. (54)

The sum of the horizontal forces, where the reaction force is equated to the hull’s
mass (including added mass) multiplied by its horizontal acceleration,

s Fy =−Fcy =M� $v̈(L(t), t)+
LH

2
ftt cos f−

LH

2
f2

t sin f%. (55)

The sum of the moments, where the terms represent the hull’s weight multiplied
by its constant moment arm, its buoyancy multiplied by its variable moment
arm, and the moment created by the acceleration of the hull’s mass (including
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added mass). This is equated to the hull’s mass moment of inertia multiplied
with its angular acceleration,

s Mc =F2g
LH

2
sin f−F2blb −M� $v̈(L(t), t)+

LH

2
ftt cos f

−
LH

2
f2

t sin f% LH

2
cos f

+ M� $L� (t)−LH

2
ftt sin f−

LH

2
f2

t cos f% LH

2
sin f

= Jcmftt , (56)

where lb is the moment arm between the buoyancy force and the pivot.
The buoyancy and gravitational forces are

F2b = rflgVHS (y, t), F2g =Mg, (57, 58)

and Fcx and Fcy are the vertical and horizonatal reaction forces at the hinge (point
c) respectively.

The relationship between the mass moment of inertia for the hull about its center
of mass and the pivot is

JH = Jcm +M� 0LH

2 1
2

. (59)

Substituting equations (53), (57), (58) and (59) into equations (54), (55) and (56)
yields the following equations for the reaction forces and the equation of motion
of the hull in terms of generalized co-ordinate f:

Fcx =−M� $L� (t)−LH

2
ftt sin f−

LH

2
f2

t cos f%+ rflgVHS (y, t)−Mg, (60)

Fcy =−M� $v̈(L(t), t)+
LH

2
ftt cos f−

LH

2
f2

t sin f%, (61)

and

JHftt − 1
2MgLH sin f

+ rflgVHS (y, t)$ D2
H

32LHS (t)
(2+ tan2 f)+

LHS (y, t)
2 % sin f

+M� LH

2
[v̈(L(t), t) cos f−L� (t) sin f]

=Qf, (62)
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where the submerged hull length is

LHS (y, t)=
d+ h(y, t)−L(t)

cos f
, (63)

and Qf is the generalized force associated with the generalized co-ordinate
f.

The tension due to the hull equals Fcx , where the hull’s inertia is M� L� x (t), the
weight of the hull is Mg and its buoyancy is rflgVHS (y, t). The volume of the
submerged portion of the hull, VHS (y, t), varies with the displacement of the hull
and time. If the hull is assumed to pivot about its attachment to the tendon then,
for a constant cross-sectional area, the submerged volume is

VHS (y, t)= p
D2

H

4
d+ h(y, t)−L(t)

cos f
. (64)

We see that RV
3 (t)=Fcx +Fx

Hfl , RH
3 (t)=Fcy and Q=−Fy

Hfl result in the
generalized force

Q
 y =$−M� $L� (t)−LH

2
ftt sin f−

LH

2
f2

t cos f%
+ rflg0p D2

Hd+ h(y, t)−L(t)
cos f 1−Mg+Fx

Hfl%
· $−3

2
vx +

1
2

vx =x=0%. (65)

6.2.          

In this section, the equation of motion for the tendon, which includes the
effects due to its coupling with the hull, is presented. This partial differential
equation describes the surge response at all points along the tendon. The
response at the tendon’s top boundary also corresponds to the surge response of
the hull.

The following equations of motion represent the pitch response of the hull, the
transverse response of the hull and the tendon and the longitudinal response of
the tendon. A binomial expansion was performed on the equations below with
respect to vx , vxx , vxxx and vxxxx , and terms above third order were discarded. In
addition, the vertical velocity is assumed small as compared to the horizontal
velocity, ut�vt . This expansion was implemented with MAPLE [16].
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Equation of motion for the pitch response of the hull:

Jcmftt − 1
2MgLH sin f

+ rflgVHS (y, t)$ D2
H

32LHS (t)
(2+ tan2 f)+

LHS (y, t)
2 % sin f

−M� LH

2 $v̈(L(t), t) cos f+
LH

2
ftt%

=Qf
fl . (66)

Equation of motion for the transverse response of the hull and tendon:

−EIvxxxx − m̂�vtt +
1P
1x

vx

+ Jvxxtt +Pvxx −
rflgpD2

H

8 cos f
(vv2

x + v2vxx )

=Q
 y. (67)

Equation of motion for the longitudinal response of the tendon:

1P
1x

−R
 V =mutt , (68)

where P is the tension in the tendon and R
 V represents the vertical forces per unit
length on the tendon. This is due to the tendon’s and hull’s weight and buoyancy.
The tension is also related to the strain by

P=EAexx =EA$1u
1x

−
1
2 01v

1x1
2

%. (69)

Solving this above expression for displacement u, results in an ‘‘Integrability
Condition’’. Details on the ‘‘Integrability Condition’’ are found in Bottega [17, 18].

If the vertical acceleration is assumed negligible as compared to the horizontal
acceleration, utt�vtt , or equivalently the longitudinal response may be negligible
as compared to the transverse response, equation (68) becomes

1P
1x

−R
 V =0. (70)

Solving for the tension in the tendon yields

P=(rflAo − m̂)g(L− x)+ (rflVHS −M)g. (71)
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Figure 6. Side view of cylindrical hull for center of buoyancy calculations.

Substituting equation (71) into equation (67) results in a mixed formulation, as
described in Bottega [17, 18], for the surge response of the tendon and hull:

−EIvxxxx − m̂�vtt

+$−(rflAo − m̂)g+
rflgpD2

H

8 cos f
vvxx%vx

+ Jvxxtt +[(rflAo − m̂)g(L− x)+ rflVHS −Mg]vxx

−
rflgpD2

H

8 cos f
(vv2

x + v2vxx )

=Q
 y
fl . (72)

The two boundary conditions are

EIvxxx +$−rflVHSg+Mg+ rflgp
D2

H

16 cos f
v2%vx

+
1
2

(rflVHSg−Mg)v

−M� $v̈(L(t), t)+
LH

2
ftt cos f−

LH

2
f2

t sin f%b
x=L

x=0

+Fy
Hfl

=0 (73)
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or dv=0, which physically prescribes zero transverse displacement and

−EIvxx −Mfl =x=L
x=0 =0 (74)

or dvx =0, which physically prescribes vanishing slope.
The forces due to wind, wave and current forces will be included in Qf

fl , Q̂y
fl , Fx

Hfl ,
Fy

Hfl and Mfl which represent the generalized moment on the hull about the revolute
joint between the hull and tendon, the generalized force on the tendon, the
horizontal and vertical forces due to the fluid forces on the hull and the moment
at the ends of the tendon, respectively.

6.2.1. Normalized equations of motion

It may be desirable to normalize the equations of motion to distinguish the
important terms from those that may be neglected for a particular system. All
spatial co-ordinates are normalized with respect to the tendon length l. Temporal
co-ordinates are normalized with respect to a time t, which may be specified as
the period corresponding to the first natural frequency of the system. This leads
to the relationships

t� =
t
t
, x́=

x
l
, v́=

v
l
, ú=

u
l
. (75–78)

The normalized pitch response of the hull from equation (66) is

ft́t́ +%1 sin f−%2v́t́t́ (L, t) cos f−%3ft́t́ = Q́f
fl , (79)

where the non-dimensional parameters %1, %2, %3 and Q́f
fl are

%1 =
t2

Jcm $− 1
2

MgLH + rflgVHS
D2

H

32LHS
(2+ tan2 f)+ rflgVHS

LHS

2 %, (80)

%2 =M� LH

2
l
Jcm

, %3 =M� L2
H

4
1
Jcm

(81, 82)

and

Q́f
fl =

t2

Jcm
Qf

fl .

The normalized mixed formulation for surge response of the hull and tendon
from equation (72) is

−v́t́t́ −%4v́x́x́x́x́ −%5v́x́ +%6v́v́x́ v́x́x́

+%7vxxtt +%8v́x́x́ −%9v́v́2
x −%10v́

2v́x́x́

= Q́y
fl , (83)

where the non-dimensional parameters %4, %5, %6, %7, %8, %9, %10 and Q́y
fl are

%4 =
EIt2

m̂�l4 , %5 = (rflAo − m̂)g
t2

m̂�l
, (84, 85)
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%6 =
rflgpD2

H

8 cos f

t2

m̂�l
, %7 = J

1
m̂�l2, (86, 87)

%8 = [(rflAo − m̂)g(L− x́l)+ (rflVHS −M)g]
t2

m̂�l2, (88)

%9 =
rflgpD2

H

8 cos f

t2

m̂�, %10 =
rflgpD2

H

8 cos f

t2

m̂� (89, 90)

and

Q́y
fl =

t2

m̂�l
Qy

fl . (91)

Terms such as v́x́x́x́x́ may be neglected when the tendon length is very large, as
is the case for many tension leg platforms, if the area moment of inertia, I, is
moderate. Although general statements cannot be made about the importance of
each term, it may be possible to estimate the significance of each term for a specific
physical model. In addition, coefficients such as %4, which is the normalized
bending stiffness, aid in the evaluation of the response in that the importance of
the parameters may be seen.

7. WAVE KINEMATICS

In the analysis presented in this paper, linear wave theory is applied [15]. While
linear wave theory appears to be an excellent approximation for the forces on the
tendon, on the hull, however, non-linear effects may be of importance. The
variable wetting of the hull’s columns may lead to such higher order effects as
ringing [19, 20, 21].

7.1.   

The random wave height power spectrum is transformed into a time history
using the method by Borgman [22]. The wave surface profile is given by

h(v, t)=
H
2

cos (kv−vt+ o), (92)

where H is the wave height and e the phase. A sample plot of a random wave
surface is shown in Figure 7. The Pierson–Moskowitz wave energy spectrum for
the significant wave height Hs (see Figure 8) is of the form

Sh (v)=
A0

v5 e−B/v4, (93)

where the constants A0 and B are defined as

A0 =0·0081g2, B=
3·11
H2

s
. (94, 95)
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Figure 7. Sample random wave.

Figure 8. Pierson–Moskowitz spectrum for a significant wave heights of 5, 9 and 15 m.
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The wave elevation is approximated as

h̄(v, t)=X A0

4BN
s
B

n=1

cos (knv−vnt+ on ), (96)

where the partition frequencies vn are

vn =$ B
ln (N/n)+B/F4%

1/4

, n=1, 2, . . . , N, (97)

and the relationship between the wave numbers, kn , and the frequencies, vn , is
defined by

v2
n = gkn tanh knd. (98)

F is the terminal frequency, where the wave energy spectrum is truncated at Sh (F).
The horizontal wave velocity is

uw = s
N

n=1X A0

4BN
vn

cosh knx
sinh knd

cos (knv−vnt+ on ), (99)

and the vertical wave velocity is

ww = s
N

n=1X A0

4BN
vn

sinh knx
sinh knd

sin (knv−vnt+ on ), (100)

8. WIND KINEMATICS

The wind speed, ū(h), is measured empirically at a reference height h above the
water surface. There are several definitions for the wind speed. In the United
States, the wind speed is measured for a mile of air to pass a fixed point. The
highest value during a year is used. The wind velocity at a height z above the water
surface is [15]

ū(z)=0zh1
1/n

ū(h), (101)

where n=7 to 8 is used for sustained winds over the open sea, n=12 to 13 for
gusts and n=7/3 for rough coastal areas. The wind-stress currents are the result
of sustained winds along the water surface.

9. CURRENT KINEMATICS

Ocean current is due to tidal and wind-stress currents and its speed, uc , may be
represented by [15]

uc =0xd1
1/7

ut (0)+0xd1uw (0), (102)
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where the values of the maximum current at the water surface for the tidal current,
ut (0), and wind-stress current, uw (0), are found empirically. Tidal currents are due
to the vertical rise and fall of tides and may be as high as 10 knots. The wind-stress
currents are the result of sustained winds along the water surface.

10. FORCES

Morison’s equation [23] is generally applied to slender offshore structures. For
a cylindrical element, the equation for the force per unit length normal to the
cylinder is

Ffl =CDr
D
2

=Vn
fl −Vn

T =(Vn
fl −Vn

T )+CMrp
D2

4
V� n

fl , (103)

where the viscous, frictional drag coefficient CD and the inertia coefficient CM are
functions of the Reynolds number, the wave characteristics, the cylinder diameter
and its roughness. The first term of equation (103) is the drag force, which is the
force per unit length required to hold the cylinder in place subject to a stream of
relative velocity (Vn

fl −Vn
T ). The second term is the force per unit length required

to hold the cylinder in place subject to a constant free stream acceleration of V� n
fl .

The acceleration of the cylinder V� n
T was already accounted for in the added mass

term.
An alternative form of equation (103) expresses the forces in its components in

the inertial frame [24] and may be expressed as

Ffl =CDr
D
2

=l×Vrel × l=(l×Vrel × l)+CMrp
D2

4
(l×V� fl × l), (104)

where a unit vector l along the length of the cylinder expressed in the inertial frame
is

l=cos ai+sin aj. (105)

The angle, a, lies between the cylinder and the x-axis, the relative velocity vector
is

Vrel =6Vx
fl −Vx

T

Vy
fl −Vy

T7, (106)

the fluid acceleration vector is

V� fl =6V� x
fl

V� y
fl7. (107)

and the fluid force vector in the inertial frame is

Ffl =6Fx
fl

Fy
fl7. (108)
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The triple products (l×V� fl × l) and (l×Vrel × l) are the fluid acceleration and
relative velocities normal to the cylinder expressed in the inertial frame,
respectively.

For the fluid forces on the hull, u is replaced with generalized co-ordinate f.
The motion of the tendon is described with the generalized co-ordinate v.
Therefore, the following geometrical relationships hold:

sin u=
vx

z1+ v2
x

, cos u=
1

z1+ v2
x

, tan u= vx . (109–111)

10.1.     

The generalized force per unit length on the tendon will be determined from
equation (103), with the relationships for the velocities and accelerations described
below.

Morison’s equation requires all velocities and acceleration, both of the structure
and the fluid, to be normal to the tendon. Therefore, each horizontal velocity and
acceleration must be multiplied by cos u, equation (110), and all vertical velocities
and acceleration by sin u, equation (109). The component of the tendon’s velocity
normal to the tendon may be written as

Vn
T =

vt

z1+ v2
x

. (112)

The velocity of the fluid normal to the tendon due to waves and current is

Vn
fl =

uw + uc −wwvx

z1+ v2
x

. (113)

The acceleration of the fluid normal to the tendon due to waves and current is

V� n
fl =

u̇w − ẇwvx

z1+ v2
x

. (114)

This results in the following equation, based on equation (103), for the generalized
force per unit length on the tendon:

Q
 y
fl =CDrfl

Do

2 buw + uc − vt −wwvx

z1+ v2
x

b0uw + uc − vt −wwvx

z1+ v2
x

1
+CMrflp

D2
o

4 0u̇w − ẇwvx

z1+ v2
x
1. (115)

10.2.     

In determining the forces on the hull, the vector form in equation (104) is
convenient. The velocity of the hull is required to determine the drag force on the
hull, its acceleration was already accounted for in the hull’s added mass term, M� .
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The displacement vector, rH , from the origin of the inertial frame to any point
along the centerline of the hull is

rH =[L(t)+ x cos f]i+[v(L(t), t)+ x sin f]j, (116)

and its velocity is

ṙH =[L� (t)− xf� sin f]i+[v̇(L(t), t)+ xf� cos f]j, (117)

which provides the values of Vx
T and Vy

T required for equation (106). The force per
unit length on the hull due to the wave and current forces in the inertial frame
is

F�Hfl =6F�x
Hfl

F�y
Hfl7, (118)

and the unit vector along the length of the hull is expressed as

l=cos fi+sin fj. (119)

This results in a moment about the pivot between the hull and the tendon of

Qf
fl =g

x=L+LHScosf

x=L

{F�y
Hflx−F�x

Hflx tan f} dx, (120)

where the horizontal and vertical forces per unit length, F�y
Hfl and F�x

Hfl , are multiplied
by their moment arms x and x tan f, and integrated over the length of the hull.
Similarly, the resultant forces on the tendon in the vertical direction of

Fx
Hfl =g

x=L+LHScosf

x=L

F�x
Hfl dx, (121)

and the horizontal direction of

Fy
Hfl =g

x=L+LHScosf

x=L

F�y
Hfl dx (122)

and found by integrating the forces per unit length over the hull’s submerged
length from x=L to x=L+LHS cos f.

The forces derived in this paper, Q
 y
fl , Q
 f

fl , F
 x
Hfl and F
 y

Hfl , are then substituted into
the equations of motion and corresponding boundary conditions.

10.3.  

The mathematical model of the TLP consists of a partial differential equation
and a set of boundary conditions that describe the motion of the elastic tendon.
This is coupled to an ordinary differential equation for the pitch of the rigid hull.
The surge response at the top boundary of the tendon is the same as for the hull.
Due to the complexities of these equations of motions and the environmental
forces, the responses must be solved numerically. These complexities include
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recalculating the location of the center of buoyancy and the submerged hull length
for each instant in time. Two additional examples are that environmental forces
on the hull affect the tension in the tendon, and forces on the tendon affect the
set-down of the hull. This set-down in turn changes the hull’s buoyancy, and
thereby alters the tendon’s tension. In this work, the finite difference method is
applied spatially, and the resulting ordinary differential equations are evaluated
in the time domain.

11. RESPONSE OF THE COUPLED TENDON AND HULL MODEL

This paper presents the response of the coupled tendon and hull model to
various ocean wave and current conditions. It addresses the following issues from
the literature:

It is important to include wave and current forces on the tendon or solely on
the hull? Forces on the tendon have been neglected in much of the literature.
If inclusion of forces on the tendon are important, is it necessary for average
or only extral tall TLPs? It has been proposed that the inclusion of
environmental forces on the tendon are important for TLPs with lengths on the
order of 1500 m.
Does the ratio between the hull’s mass and the tendon’s mass matter when
deciding on how to model the tendon? More detailed treatment of the tendon
has been considered of greater value for small hull tendon mass ratios.
What is the effect of selecting a particular estimate of the drag coefficient used
in Morison’s equation?
How does the selection of the inertia coefficient in Morison’s equation affect the
response?

In a typical TLP design, the surge, sway and yaw resonance frequencies are
below those of the wave frequency range as defined by a power spectrum such as
the Pierson–Moskowitz. The heave, pitch and roll resonance frequencies are above
this range. The resulting minimal response is a desirable feature of TLPs, and these
structures are designed with this in mind. A small vertical displacement greatly

T 1

Properties used for sample velocity profiles

Property Value

Tendon length 500 m
Water depth 500 m
Water height 15 m
Wave frequency 0·5 rad/s
Wind reference height 10 m
Wind speed at reference height 30 m/s
Exponent n used in wind speed equation 10
Maximum tidal current 2 m/s
Maximum wind-stress current 2 m/s
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T 2

TLP properties of quarter ISSC based model

Property Value

Tendon length 415 m
Tendon outer diameter 0·8 m
Tendon inner diameter 0·3464 m
Tendon density 7800 kg/m3

Hull length 67·5 m
Hull outer diameter 16·88 m
Hull inner diameter 16·2 m
Hull mass moment of inertia 3·19e6 kg m2

Hull mass 10·1e6 kg
Modulus of elasticity 204e9 N/m2

Pontoon height 10·5 m
Pontoon depth 7·5 m
Pontoon length 69·37 m

reduces the cost of equipment used in the drilling for oil and natural gas, and is
an important design constraint.

Note: in the response figures presented in this paper, the top graph corresponds
to the pitch of the hull. The middle graph corresponds to the surge response of
the hull and the top of the tendon. The bottom graph is for the surge response
of an illustrative intermediate point along the tendon.

12. RESPONSE OF A 415-m TENDON WITH A 67·5-m HULL

In this section, the response of a model with structural properties listed in
Table 2 and fluid properties in Table 3 are presented. These values are based on
the International Ship and Offshore Structure Congress (ISSC) TLP model from
the ISSC Derived Loads Committee I.2 developed in 1985 and presented in
Chatterjee et al. [25]. Chatterjee et al. studied the response using the finite element
method. The ISSC TLP model was developed to allow different researchers to
study the same model. It does not correspond to an actual TLP in service to avoid
any ties to an individual company.

T 3

Fluid properties of quarter ISSC
based model

Property Value

Mean water level 450 m
Water density 1025 kg/m3

Significance wave height 9 and 15 m
Drag coefficient 1·0
Inertia coefficient 2·0
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The parameters shown in Table 2 are modifications of the ISSC model. The
ISSC TLP model has four columns and pontoons and tendons at each corner. Our
model is a single tendon–single column idealization, and therefore, the hull’s mass
was reduced by a factor of four. The hull’s volume, which affects the tension in
the tendon, is based on the volume of one column (its dimensions are listed as the
hull length, hull outer diameter and hull inner diameter), and one rectangular
pontoon.

As discussed previously, a single tendon model does not properly capture the
pitch response of a hull moored at each corner. The frequency of the pitch response
would be higher with the additional tendons, due to the restriction of the pitch
of the hull. In order to raise the pitch frequency, the Hull’s mass moment of inertia
was reduced from 82·37e9 kg m2 to the values shown in Table 2. The pitch
frequency is now within the range of the forcing frequencies of ocean waves. In
a traditional TLP design, the pitch frequency will be higher than this range, as will
be seen in the case with a 415-m tendon in the next section. The amplitude of the
pitch response of the hull is greater for the 415-m tendon model than for the
1415-m tendon model. This is due in part to the 415-m tendon model’s natural
frequency being in the range of the wave frequencies. The tendon’s diameter was
not specified in the ISSC model. However, the vertical stiffness of the combined
tethers was provided for researchers modelling the tendons as massless springs.
Tendon outer and inner diameters were selected based on studying the dimensions
of actual TLPs. Structural damping is not included in this analysis, only fluid
dissipation due to the drag term in equation (103) is modelled.

12.1.      

The response of the system to stochastic wave forces shows an oscillation about
its vertical equilibrium position. This has been well documented in the literature.
The response of the tendon is dominated by a rigid body mode. This can be seen
by comparing the displacement of the hull with an intermediate point on the
tendon. Their peaks are found at approximately the same instants of time.

Current will cause a TLP to oscillate about an offset position rather than its
vertical position. This offset in the surge direction has a corresponding setdown,
the lowering of the TLP in the heave direction, which increases the buoyancy
forces. This results in a higher tension in the tendons than if the tendon and hull
were in a vertical position.

12.2.           

In many of the reviewed papers, tendons were treated as massless springs
[26–28]. The response of the TLP, subjected to waves and current along the
entire length of the tendon and hull, was compared to a case where these
environmental forces are only on the hull (and the top of the tendon since they
are connected). In a third case, the forces are on the hull and the top five nodes
of the tendon. A plot of the response of all three cases on a single set of graphs
shows that inclusion of forces along the entire length of the tendon results in the
largest offset as would be expected. This is presented in Figure 9. Forces solely
on the hull resulted in the smallest offset. This illustrates the importance of
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Figure 9. Comparison of three cases: significant wave height of 15 m and current of −10 m/s on
a 415-m tendon and a 67·5-m hull: (a) hull pitch, (b) hull surge, (c) tendon surge at 242 m along
tendon from its bottom.

including wave and current forces on the tendon. Note that power spectral
densities for the responses in this paper may be found in Adrezin [29].

13. RESPONSE OF A 1415-m TENDON WITH A 67·5-m HULL

In the study by Patel and Lynch [30], the hull was modelled as a rigid body with
six degrees-of-freedom subject to wave forces. It was coupled to the finite element
model of the tendon. This was accomplished by first calculating the response of
the hull while assuming a quasi-static tendon stiffness. The hull’s displacements
were then used in the numerical analysis of the tendon’s stiffness. The hull’s
response was then reevaluated. Only one iteration was performed since the hull’s
response was predominately due to inertia and the effect of the tendon’s stiffness
was secondary.

Several perturbations were performed with various physical properties. Patel
and Lynch concluded that differences between the quasi-static and dynamic
tendon models were minimal except for tendons of lengths on the order of 1500 m
or greater. Therefore, the effect of the tendon’s dynamics on the hull’s response
was only significant when the tendons were long, had a large mass per unit length
and the hull’s displacements were small. The bending stresses in the tendons were
also determined to be small. The largest values were found for short tendons with
large outer diameters and thin wall thicknesses.

In this section, the TLP of the previous section is reanalyzed with a longer
tendon. It is desired to determine the effect of the inclusion of dynamic forces on
the tendon. The tendon is now of length 1415 m instead of 415 m. In order to raise
the pitch frequency to a realistic level, the hull’s mass moment of inertia was
reduced from 82·37e9 kg m2 to the values shown in Table 4. The pitch frequency
is now well above the forcing frequencies of ocean waves used in a traditional TLP
design. Its structural properties are listed in Table 4 and fluid properties in Table 5.
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T 4

Properties of tall TLP model

Property Value

Tendon length 1415 m
Tendon outer diameter 0·9 m
Tendon inner diameter 0·84 m
Tendon density 7800 kg/m3

Hull length 67·5 m
Hull outer diameter 16·88 m
Hull inner diameter 16·2 m
Hull mass moment of inertia 3·19e6 kg m2

Hull mass 10·1e6 kg
Modulus of elasticity 204e9 N/m2

Pontoon height 10·5 m
Pontoon depth 7·5 m
Pontoon length 69·37 m

13.1.           

The response of the system to current and stochastic wave forces with a
significant wave height of 9 m is compared to a significant wave height of 15 m.
This is shown in Figure 11. Both exhibit oscillations about the same offset position
due to an equal applied current, but the higher significant wave height led to larger
peak amplitudes. Figure 10 shows the profile of the tendon subjected to current
and a significant wave height of 9 m.

The response for a TLP subjected to waves with a significant wave height of
15 m and current along the entire length of the tendon and hull. Its power
spectrum, exhibits dominant frequencies below 1 Hz, which corresponds to the
forcing frequencies of the ocean waves. Dominant frequencies in the pitch response
from 4 to 5 Hz may also be seen, corresponding to the overall motion of the hull.
This response of the TLP was compared to a case where these environmental
forces are only on the hull (and the top of the tendon since they are connected).
An additional case, where the forces are on the hull and the top five nodes of the
tendon, was also studied. A comparison shows that inclusion of forces along the

T 5

Fluid properties of tall TLP model

Property Value

Mean water level 1450 m
Water density 1025 kg/m3

Significance wave height 9 and 15 m
Drag coefficient 1·0
Inertia coefficient 2·0
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Figure 10. Position of tendon at several time steps.

entire length of the tendon results in the largest offset. Forces solely on the hull
resulted in the smallest offset. This illustrates the importance of including wave
and current forces on the complete tendon. The power spectral densities were
consistent for all three cases.

Figure 11. Comparison of a significant wave height of 9 and 15 m, both with a current of −10 m/s
on a 1415-m tendon and a 67·5-m hull: (a) hull pitch, (b) hull surge, (c) tendon surge at 825 cm along
tendon from its bottom.
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14. VARYING THE HULL: TENDON MASS RATIO

The significance of the inclusion of environmental forces on the tendon was
explored in a paper by Adrezin and Benaroya [31]. The surge and pitch responses
for the hull, and the surge response along the tendon are presented for two cases.
Case 1 represents a tendon with a hull mass two orders of magnitude smaller than
the tendon’s mass. In Case 2, the hull mass is two orders of magnitude greater
than the tendon. Inclusion of tendon forces was found to significantly increase the
amplitude of the surge response for Case 1 but not for Case 2.

15. MONTE CARLO SIMULATION

As discussed previously, Morison’s equation [23] is generally applied to slender
offshore structures. For a cylindrical element, the equation for the force per unit
length normal to the cylinder is

Fft =CDr
D
2

=Vn
fl −Vn

T =(Vn
fl −Vn

T )+CMrp
D2

4
V� n

fl . (123)

The first term of equation (123) is the drag force, which is the force per unit
length required to hold the cylinder in place subject to a stream of relative
velocity (Vn

fl −Vn
T ). The second term is the force per unit length required to

hold the cylinder in place subject to a constant free stream acceleration of V� n
fl .

The acceleration of the cylinder V� n
fl was already accounted for in the added mass

term.
The viscous, frictional drag coefficient CD and the inertia coefficient CM are

functions of the Reynolds number, the wave characteristics, the cylinder diameter
and its roughness. There is no consensus on which values to select for these
coefficients [32, 33]. Both tend to be in the range from 0·6 to 2·0. These coefficients
may also change over time due to factors such as increasing roughness of the
tendons. In this section, a Monte Carlo simulation is performed to account for
this spread. A uniform random distribution of coefficients was selected from 0·6
to 2·0 for each coefficient. The results are presented for the TLP with a 1415-m
tendon and 67·5-m hull. Its structural properties are listed in Table 4 and fluid
properties in Table 5. On a personal computer with a 200-MHz Pentium Pro
microprocessor, this series of 40 numerical simulations required about 2 weeks of
CPU time.

15.1.  

Twenty computer simulations were performed, each with a different drag
coefficient in the range from 0·6 to 2·0. The inertia coefficient is held constant at
2·0. The response shows that the offset position and the amplitude are both
dependent on the drag coefficient. The surge of the hull is about triple for the case
with the maximum displacement as compared to the minimum. Figure 12 shows
the mean response banded by the mean plus one standard deviation, and mean
minus one standard deviation.
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Figure 12. Monte Carlo simulation for drag coefficient +STD/mean/−STD: (a) hull pitch, (b)
hull surge, (c) tendon surge at 825 m along tendon from its bottom.

15.2.  

Twenty computer simulations are performed, each with a different inertia
coefficient in the range from 0·6 to 2·0. The drag coefficient is held constant at
2·0. The response does not show a significant dependence on the inertia coefficient.
A plot of the minimum response subtracted from the maximum response in
Figure 13, shows the small differences due to varying the inertia coefficient.

Comparing the drag force with the inertia force term of equation (123), it can
be seen that the drag force will be greater for certain conditions. In this Monte

Figure 13. Monte Carlo simulation for inertia coefficient (max−min): (a) hull pitch, (b) hull
surge, (c) tendon surge at 825 m along tendon from its bottom.
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Carlo simulation, current is included. This has a constant velocity and therefore
only contributes to the drag force. A second factor is that the amplitude of the
horizontal wave acceleration is equal to the amplitude of the horizontal wave
velocity multiplied by the ocean wave frequency. Since these wave frequencies
from the Pierson–Moskowitz used in this analysis are less than 1 rad/s, the
amplitude of the acceleration is lower than the velocity, resulting in a greater
contribution to the drag term. A third effect is due to the outer diameter squared
in the inertia term that will result in a smaller inertia effect for the ocean wave
forces on the tendon, since its diameter is less than 1 m. Wave forces on the hull
however result in a larger contribution from the diameter squared term since the
hull diameter is much greater than 1 m.

For certain systems not analyzed here, the inertia term may dominate the drag
term. In particular when the hull and tendon diameters are large, the ocean wave
frequencies are greater than 1 rad/s and current velocity is low.

16. SUMMARY

A set of non-linear equations of motion for a single-tendon tension leg
platform was developed. Many of the simplifying assumptions used by prior
researchers have been eliminated. These assumptions are: the tendon may be
modelled as a massless spring, ocean forces on the tendon may be neglected, the
tendon is neutrally buoyant and therefore its weight and buoyancy may be
neglected, the hull and tendon may be treated as uncoupled equations, the change
in buoyancy due to hull setdown may be neglected, inculding ocean wave forces
with no current, the tendon does not need to be modelled as a beam under time
dependent tension, the equation of motions are linear, and the waves are
deterministic.

The equations of motion consist of partial differential equations representing the
transverse and longitudinal response of the tendon. In addition, a mixed
formulation partial differential equation describing the surge response of the hull
and tendon, coupled with an ordinary differential equation for the pitch response
of the rigid hull is presented. The full derivation with assumptions are presented.
These equations may also be applied to other coupled elastic beam/rigid mass
problems, such as antennas in space. It is suitable for complex forcing functions
and where gravity is present. The response is calculated numerically in the time
domain by implementing a finite difference scheme. The equations of motion
developed in this paper offer an advantage over those in the literature. Researchers
can investigate the terms in these equations to determine which are important for
their model.

The response, analyzed for wave and current loading, was presented with a
planar motion assumption. The TLP will oscillate about its vertical position due
to ocean waves. Current will cause a TLP to oscillate about an offset position
rather than its vertical position. This offset in the surge direction has a
corresponding setdown, the lowering of the TLP in the heave direction, which
increases the buoyancy forces. This results in a higher tension in the tendons than
if the tendon and hull were in a vertical position.
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Forces on the tendon have been neglected in much of the literature. The
responses presented in this work show that the inclusion of forces on the tendon
will result in both a greater amplitude and offset position when compared to
studies where these forces are neglected. This offset position, which is the surge
displacement from the vertical position, is significant in the operation of a TLP.
It is necessary to position the hull over the oil wellhead, and therefore surge
displacement must be accounted for. This was shown to be important for both a
typical height TLP with a 415-m tendon and an extra tall TLP with a 1415-m
tendon.

Inclusion of tendon forces on a TLP with a 470-m tendon, where the hull’s mass
is two orders of magnitude smaller than the tendon’s mass, was shown to
significantly increase the amplitude of the surge response. This is supported by the
literature. However, if the hull mass is two orders of magnitude greater than the
tendon, the response is not significantly affected. Note that for the TLP with a
415-m tendon discussed above, its tendon mass was less than one order of
magnitude smaller than the hull mass and it showed an increased surge response
due to the inclusion of ocean forces on the tendon.

A Monte Carlo simulation was performed on the drag and inertia coefficients
in Morison’s equation. A uniform random distribution of coefficients was selected
from 0·6 to 2·0 for each coefficient. Twenty computer simulations were
implemented for each coefficient. The response showed that the offset position and
the amplitude are both dependent on the drag coefficient. The surge of the hull
shows a maximum offset approximately three times greater for the coefficient that
resulted in the maximum displacement than the minimum. The response did not
show a significant dependence on the inertia coefficient. The drag term in
Morison’s equation was dominant over the inertia term due to two main factors.
The current was assumed constant and therefore only contributed to the drag
force, and the ocean wave frequencies were below 1 rad/s resulting in a smaller
contribution to the inertia term. For certain systems not analyzed here, the inertia
term may dominate the drag term. In particular when the hull and tendon
diameters are large, the ocean wave frequencies are greater than 1 rad/s and
current velocity is low.

A significant effort was made in solving these equations of motion numerically.
The response is calculated in the time domain by implementing a finite difference
scheme. Obtaining solutions that would converge required extensive CPU time. In
addition, each parametric study required on the order of weeks of CPU time,
limiting the number of parameters that could be varied.
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APPENDIX: NOMENCLATURE

d mean water level (water depth)
l length of tendon
m̂ tendon mass per unit length
m̂� tendon mass per unit length (including added mass)
v(x, t) horizontal displacement of a point x on the tendon
A tendon cross-sectional area of hollow tendon
Ao tendon cross-sectional area of solid tendon
DH outer diameter of the cylindrical hull
DHi inner diameter of cylindrical hull
Di tendon inner diameter
Do tendon outer diameter
I area moment of inertia of the tendon
J mass moment of inertia of a thin hollow disk of tendon (including

added mass)
Jcm mass moment of inertia of a hull about its center of mass

(including added mass)
JH mass moment of inertia of hull about the pivot connecting it to

the tendon (including added mass)
L Lagrangian
L projected length of tendon onto the x-axis
LH length of hull
LHS (v, t) length of submerged portion of the hull measured along its

centerline
M hull mass
M� hull mass (including added mass)
M3(t) generic moment on the hull about the pivot connecting it to the

tendon
P tension in the tendon
Q
 y generalized force per unit length in the y-direction
Qf generalized force associated with the generalized co-ordinate f
R(x) radius of curvature
R
 V

1 (t) generic vertical force per unit length
R
 H

1 (t) generic horizontal force per unit length
R
 V

2 (x, t) generic vertical force per unit length
R
 H

2 (x, t) generic horizontal force per unit length
R
 V

3 (x, v, vx , vxx , vxxx , t) generic vertical force per unit length
RH

3 (t) generic horizontal force on the hull passing through the pivot
connecting it to the tendon

T kinetic energy
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V potential energy
VHS (v, t) volume of the submerged portion of the hull
W work
h(y, t) wave height elevation
rT tendon density in reference configuration
rTp (s) tendon density in perturbed configuration
rfl water density in reference configuration
rflp (s) water density in perturbed configuration
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